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Nonequilibrium steady-state circulation and heat dissipation functional
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A nonequilibrium steady-state~NESS!, different from an equilibrium, is sustained by circular balance rather
than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a
positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is
intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in
turn suggests a Boltzmann’s formulalike relation between rate constants and energy in NESS. Expanding this
unifying view on NESS to diffusion is discussed.
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The master equation is a widely used stochastic mode
single-molecule conformational kinetics. In a thermal eq
librium, the probability ratio between any two states is
lated to the rate constants between them, which in tur
related to energy according to the Boltzmann formula

pi /pj5q~ j ,i !/q~ i , j !, q~ j ,i !/q~ i , j !5eDE, ~1!

whereDE is the energy difference, inkBT, between statesi
and j or, equivalently, the heat dissipated in the jump fromj
to i. These relations, consequences of detailed balance
fundamental to chemical equilibrium. In recent yea
master-equation models have also been applied to motor
tein kinetics@1#. The novel feature of this class of models
that a system reaches its stationarity viacircular balance
rather than detailed balance@2,3#. In a nonequilibrium
steady-state~NESS!, there is also a relation between ra
constants and certain probabilities. The relation was ex
sively studied in Refs.@4,5#, but it has not been widely rec
ognized in statistical mechanics. Here we try to develop
recent stochastic theory of Gallavotti-Cohen symmetry@6#
from the circulation approach, and thus unify the two the
ries for far-from-equilibrium statistical mechanics. Both a
proaches yield the Onsager reciprocity@2# in the linear re-
gime @4,7#. Reference@4# also provided the Onsager
coefficients with a probabilistic interpretation.

Figure 1~a! gives an example. It is easy to compute t
steady-state flux J5m1q(1,2)2m2q(2,1)5m2q(2,3)
2m3q(3,2)5m3q(3,1)2m1q(1,3), which in general is
nonzero. Them i are the steady-state distributions, which c
be easily obtained from the master equationdm i /dt
5( jm jq( j ,i )2m iq( i , j )50. It was shown in Ref.@4# that
J can be uniquely decomposed into twoone-way-cycle
fluxes: J5J12J2 such thatJ1 /J25q(1,2)q(2,3)q(3,1)/
q(2,1)q(3,2)q(1,3). Furthermore, if one follows the trajec
tory of the Markov jump processXs (0<s<t), which visits
in succession the statesx1 ,x2 , . . . ,xk , . . . ,xn , (xk
P$1,2,3%), and denotesN1 ~or N2) the number of timesXs
completes the cycle 1231~or 1321), then limt→`@N1(t)/t#
5J1 and limn→`@N2(t)/t#5J2 . Thus, J1 and J2 have
strong probabilistic meaning. Figure 1~b! shows how to com-
puteJ1 andJ2 . See Refs.@4,5# for for details.

*Email address: qian@amath.washington.edu
1063-651X/2001/64~2!/022101~4!/$20.00 64 0221
or
-
-
is

are
,
ro-

n-

e

-
-

It is important to point out that the stochastic approach
NESS of macromolecules in aqueous solution at cons
temperature, based on either master equations or diffusio
more than a phenomenological theory. Recent work on
chastic macromolecular mechanics@8,9# of motor proteins
and other biomolecules have shown that a complete se
thermodynamic laws can be obtained from the formalis
Thus, it is an approach in parallel and complementary
Boltzmann’s approach to irreversibility for gases and liquid
Both approaches are rooted in Newtonian mechanics, b
invoke a stochastic elementa priori in dealing with colli-
sions@10#, and both give the second law of thermodynam
as an inequality:Ḣ>0 @10# and Ċ<0 @9# with H and C
being nonequilibrium generalizations of entropy and Hel
holtz free energy for microcanonical and canonical e
sembles, respectively.

NONEQUILIBRIUM STEADY-STATE

We now consider aN-state Markov jump processXs ,
(0<s<t) with transition ratesq( i , j ). Again, we assumeXs
visits in succession the statesx1 ,x2 , . . . ,xk , . . . ,xn . We in-
troduce a function of the trajectory$Xs%:

W~ t !5 logS q~x1 ,x2!q~x2 ,x3! . . . q~xn21 ,xn!

q~x2 ,x1!q~x3 ,x2! . . . q~xn ,xn21! D . ~2!

Note kBT log@q(i,j)/q(j,i)# is the energy difference betwee

FIG. 1. ~a! A simple model of conformational transitions wit
three states. If the system is closed without pumping, th
q12q23q315q21q32q13 and the stationary state is detail balanced. F
a pumped system, the equality does not hold, and the statio
state is a NESS with circular fluxJÞ0. TheJ can be further de-
composed into probabilistically meaningfulJ1 and J2 such that
J5J12J2 and J1 /J25q12q23q31/q21q32q13. J1 and J2 can be
computed from the scheme in~b! in which the clockwise~cw! and
counter clockwise~ccw! one-way-cycle fluxes are shown. See R
@4# for computing one-way-cycle fluxes in more complex system
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 64 022101
statesi andj. Hence Eq.~2! is the heat dissipation associate
with the jumpsx1→x2 . . . →xn in kBT unit. We shall there-
fore call it an instantaneous heat dissipation functiona,
which is a more informative name than theaction functional
@6#. In terms ofW(t), a cycle completed byXs is particularly
important in NESS: The system returns to its original st
after a cycle but a finite amount of heat has been dissip
due to the irreversible jumps:xi→xj when m iq( i , j )
Þm jq( j ,i ). To sustain the stationarity, an equal amount
energy has to be ‘‘pumped’’ into the system to compens
the heat loss. Recent work on the ‘‘fluctuation theorem
focuses on the statistical properties ofW(t) @6#. By identify-
ing W with heat energy, a Boltzmann formulalike relatio
exists in NESS:J1 /J25eDW, whereDW is the heat dissi-
pation for completing a cycle. As we shall show, t
Gallavotti-Cohen symmetry ofW(t) is a consequence of thi
important relation.

Since the total number of states is finite, theXs continu-
ously completes cycles. LetC be the set of all possible
cycles. This immediately provides us a method to comp
the limit of W(t):

lim
t→`

W~ t !

t
5 (

nPC

N1
n ~ t !

t
logS J1

n

J2
n D 1

N2
n ~ t !

t
logS J2

n

J1
n D

5 (
nPC

~J1
n 2J2

n !logS J1
n

J2
n D ~3!

in which N1
n (t) @N2

n (t)# is the number of times the cyclen
is completed clockwise, cw~counterclockwise, ccw! up to
time t. Equation~3! turns out to be the entropy productio
rate~EPR!! In an isothermal NESS, the EPR equals the me
heat dissipation rate~HDR!. The right-hand side of Eq.~3!
can be rewritten as@4,5,11#

EPR5j5(
i j

@m iq~ i , j !2m jq~ j ,i !# logS m iq~ i , j !

m jq~ j ,i ! D , ~4!

wheremk is the steady-state distribution. It is clear thatj >0
and the equality holds if and only if the Markov process
detail balanced:m iq( i , j )5m jq( j ,i ).

The idea behind the fluctuation theorem was to obt
further statistical details aboutW(t). This can be accom
plished by computing its logarithmic moment generati
function @6#: Q(l)52(1/T)logE@e2lW(T)#, where E@•#
stands for expectation. Note thatW(t) is not stationary in
general; it is stationary only when theXs satisfies detailed
balance. We can express the expectation in terms of the
culations as@12#

E@e2lW~ t !#5 (
n50

`

PN~ t !~n! (
N1

n ,N2
n

P„$N1
n ,N2

n %uN~ t !5n…

3)
nPC S J1

n

J2
n D 2lN1

n

S J2
n

J1
n D 2lN2

n

' (
n50

`

PN~ t !~n!H (
nPC

p2
n F S J1

n

J2
n D 12l

1S J1
n

J2
n D l

2S J1
n

J2
n

11D G J n

, ~5!
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wherePN(t) is the probability for the number of returns, c
and ccw, as well as the noncircular reversed path, up to t
t; P„$N1

n ,N2
n %uN(t)… is assumed to be multinomial withp6

n

being the stationary probabilities forn6 and p1
n /p2

n

5J1
n /J2

n . The symmetryQ(12l)5Q(l) is evident.
What does this symmetry tell us about the random proc

W(t)? The symmetry indicates thatW(t) has a probability
density function in the form off W(t)(w)5ew/2g(w2,t). It
reflects a natural symmetry inC with eachn divided into
cw and ccw. The instantaneous heat dissipationW(t) is a
stochastic process increasing linearly, on average, w
rate j .0. There is a small tail of probability of being
negative@13#. Note that the logarithmic moment generatin
function for a Brownian motion with diffusion constantD
and drift rate V is 2Vl1Dl2. Only when D5V5a,
(1/A4pat)exp@2(w2at)2/4at# has the symmetryQ(l)
52al(12l). Therefore, the symmetricQ(l) suggests a
certain relationship between the rate~V! and fluctuation~D!
of the heat dissipationW(t) in a NESS.

The dynamics of an irreversible process can be view
as a process stochastically completing dissipative cy
in succession@5#. Again, considering Fig. 1~a!, and assuming
q(1,2)5q(2,3)5q(3,1)5q1 , and q(2,1)5q(3,2)5q(1,3)
5q2 , the motion can be mapped to a continuous-time
ased random walk withq1 and q2 . For large t, W(t)
'$Aq11q2Bt1(q12q2)t% log(q1 /q2), where Bt is the
standard Brownian motion. ClearlyE@W(t)#/t5(q1

2q2)log(q1 /q2). The Brownian motion approximation fo
the random walk, however, is not sufficiently accurate
computing the symmetricQ(l) for W(t): QRW(l)
5q1(q1 /q2)l1q2(q2 /q1)l2(q11q2) but QBM(l)
52l(q12q2)ln(q1 /q2)1l2(q11q2)@ln(q1 /q2)#2/2. The
latter, the Taylor expansion of the former atl50, destroys
the symmetry. Since the Brownian motion approximati
preserves the expectation and the variance of theW(t), the
symmetry in this case must reflect higher-order statistics
W(t): ^(DW)3&5tQ-(0)5t(q12q2)@ ln(q1 /q2)#3 while
the Browian motion approximation gives 0. NoteW(t) is
always positively skewed; the fluctuations inW(t) are not
symmetrical in the conventional sense. However, there
two ‘‘symmetric’’ characteristics associated with theW(t).

~1! With respect to time, for eachXs there is a corre-
sponding time-reversible processX̃s ; their respective HDF’s
W(t) andW̃(t) are the same.

~2! With respect to the probability distribution forW, the
cornerstones for the symmetry are the two relationsq1 /q2

5J1 /J2 and J1 /J25eDW. They are to be compared wit
Eq. ~1!. The latter relation resembles and generalizes
Boltzmann formula to NESS: the ratio of the rates going
and ccw on a cycle is related to the heat dissipation of
cycle via a ‘‘Boltzmann factor.’’ In an equilibrium,DW
50⇔J15J2 on a cycle.

DIFFUSION PROCESSES

Motor proteins have also been modeled in terms o
Brownian motion in an energy landscape@14,8#. The above
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 64 022101
analyses can be generalized to the diffusion process
Smoluchowski equation

]P~x,t !/]t5D“P~x,t !2~1/h!“•~FP! ~6!

in which a conservativeF leads to a reversible diffusion
processXt with corresponding stationary equilibrium. Th
relation between equilibrium probability and forceF is the
Boltzmann’s formula Peq(x)} exp[2U(x)/kBT] , where kBT
5hD and 2“U5F. NonconservativeF necessarily leads
to NESS@15,8#, in which the stationary probability distribu
tion satisfies2D“Pss(x)1(1/h)FPss(x)5J, where J is
the stationary probability flux and“•J50. It is possible to
generalize the one-way-cycle fluxes to continuous sp
@15–17#, known as Watanabe formula:

~Prob. ofXt cycling cw alongG!

~Prob. ofXt cycling ccw alongG!
5expH 1

kBT R
G
F•dlJ ~7!

for an arbitrary simple closed curveG @18#. The right-hand
side is known as the thermodynamiccycle forcealong theG
@4,8#. More importantly, one defines the heat dissipat
functional ~force3displacement!:

W~ t !5E
0

t

F~Xs!+dXs

5E
0

t

F~Xs!•dXs1
1

2E0

t

dXs•~“F dXs!, ~8!

where + is integration in the Stratonovich sense, and• is
integration in the Ito sense@17,6#. The second set of terms o
the right-hand side of Eq.~8! is due to fluctuations while the
first term is due to ‘‘hydrodynamic’’ movement@19#. It can
be shown that in a NESS,E@W(t)/t# equals

E F•J dx5hE J2Pss
21dx5E ~“3A!•~“3g!dx, ~9!

whereg is the curl part ofF52“f1“3g by Helmholtz-
Hodge decomposition@8,17#. All these expressions, in term
of the stationary solution to Eq.~6!, have been used in lit
erature as EPR of NESS. When near an equilibrium, thePss
in the above expressions can be approximately replace
the Peq , which possesses certain symmetry due to deta
balance@4,8#.

We again consider a simple example to gain insig
Let Xt be a one-dimensional diffusion, with diffusio
coefficientD and constant drift rateV, on a circle. The HDF
in Eq. ~8!, in unit kBT, is W(t)5(1/kBT)*0

t F•dXs

5(V/D)*0
t dXs5(V/D)Xt5A2V2/DBt1(V2/D)t, where

F5hV5kBTV/D according to the Einstein relation. Th
second term in Eq.~8! is zero, sinceF is constant. It is very
important to note that for arbitraryD andV, the correspond-
ing W(t) is also a Brownian motion with a drift. Howeve
the ‘‘diffusion coefficient’’ and ‘‘drift rate’’ for W(t) are the
same,a5V2/D! @20# This relation is essential for the sym
metry of the logarithmic generating function:Q(l)5
2al(12l). It suggests that the rate of heat dissipation a
the fluctuations in the dissipation have a relationship
NESS.
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One can learn more about the properties ofW(t) from this
simple example. Let us defineWm51/(mDt)(k50

m W(kDt)
as the ‘‘mean heat dissipation rate.’’ Then it is easy to sh
that Wm has a normal distribution withE@Wm#5(m
11)aDt/2 and VAR@Wm#5(m11)(m12)aDt/3. There-
fore, the ratio between probabilities ofWm5w and Wm5
2w: PWm

(w)/PWm
(2w)5exp@23w/(2m14)#. This is the

Gallavotti-Cohen fluctuation formula~see p. 182, Eq.~13.43!
of Ref. @10#!.

A connection with Onsager’s principle of least dissipati
~PLD! can also be established by considering a noncon
vative F52“f1ef irr using the perturbation method. Th
precise meaning of a NESS near equilibriu
is small e with “•f irr 50. Since Gibbs entropyS@P#

52*P(x,t)ln P(x,t)dx, its time derivativeṠ5EPR-HDR
@21#. This equation should be compared with Eq.~5.10! in
Ref. @22#. Onsager introduced EPR5h*J2P21 dx and as-
serted thatd(EPR)50 for linear irreversibility. Expanding
P(x)5exp@2f/kBT#1ec(x) the perturbation analysis yield
a linear approximation of EPR5e2*ef(kBT“c1c“f
2e2ff irr )2 dx1O(e3), which is quadratic ine as expected.
The Euler-Lagrange equation for variational princip
d(EPR)50 is

kBT“2c1“•~c“f!52~“f•f irr !e2f, ~10!

which is what one obtains from perturbation analysis of E
~6!. Comparing Eq.~10! with Eq. ~6!, we immediately have,
for linear irreversibility,J5e2ff irr @8#. Therefore, the PLD
is equivalent to Eq.~6! in the linear regime near an equilib
rium! This relationship, however, does not hold, in gener
beyond the linear regime@23#.

DISCUSSION

In an isothermal NESS there is macroscopic heat diss
tion, jt.0, which balances the entropy production. Mes
scopically, however, there are fluctuations in the instan
neous heat dissipationW(t). ‘‘Instantaneous’’ physically
means the time scale is on the order of the correlation tim
the white noise in Eq.~6!. The symmetry we discussed abov
indicates that the fluctuations are symmetric with respec
time. WhenW(t)/t,j, the system absorbs heat from th
surrounding heat bath. This consists of the probability
second law violations@13#. This probability decreases expo
nentially with increasingt; irreversibility is a macroscopic
phenomenon.

We have identified the action functional (W), introduced
in Ref. @6#, with the heat dissipation in a NESS. We show t
concept of cycle and circulation flux~J! is central in the
discussion on NESS. In terms ofW and J, we discover a
relationshipJ1 /J25eDW along each cycle that generalize
the Boltzmann’s formula to NESS. The ratio of the rates
again related to an energy, now the dissipated heat in NE
More importantly, the Gallavotti-Cohen symmetry turns o
to be a mathematical consequence of this relationship.

The recent new development in nonequilibrium statisti
mechanics, based on a dynamical systems approach an
theory of invariant measures@24#, has brought the determin
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 022101
istic and stochastic approach to the subject into a sin
mathematical framework. The concept of EPR in both
proaches can be mathematically defined in terms of
Radon-Nikodym derivatives@25#. The irreversibility of a
NESS can be characterized by an instantaneous heat dis
tion functionalW(t), which is a stochastic process that d
serves further investigations, including microscopic expe
mental measurements.

The main purpose of this paper is to introduce the conc
of circulation into the current state of affairs. Systems la
ing detail balance have been widely studied but little att
tion has been paid to the importance of circular balance
the NESS thermodynamics associated with it. Here we h
bridged the research on NESS@6#, the theory of circulation
@5#, and Hill’s theory for free-energy transduction@4#—the
theoretical framework for a large class of biophysical p
cesses@9#. The unified theory also incorporates Japanese
German schools@15,19#, both with a long tradition in mod-
i.
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en
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e
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eling NESS by diffusion processes. Hill’s approach w
completely based on master equations that allowed him
obtain many in-depth results@4#. These two approaches ar
mathematically analogous, though an approach based on
fusion is technically more demanding. On the experimen
side, a recent development in motor proteins has provide
concrete experimental system for studying NESS. It is
hope that closer interaction between the theoretical and
perimental work in this field will further advance our unde
standing of statistical mechanics and thermodynamics of
ing systems far from equilibrium.
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Ċ52EPR>0 with the equality holds true for the stationar
process~equilibrium!, the 2nd law for isothermal processe
For nonconservativeF, the internal energy does not exist;C
cannot be defined as a state function but the Gibbs entropy
still be defined.

@22# L. Onsager, Phys. Rev.37, 405~1931!. In his paper dissipation
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